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The model of polymeric chains in solution developed in the preceding paper 
(this issue) is examined. Results of some numerical calculations are reported. 
Predictions of chain behavior are derived from the model in terms of the 
exchang e interaction energy parameter X~2, polymer concentration, number of 
segments in a bundle, molecular mass, and temperature. 
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1. INTRODUCTION 

In  the preceding paper  (1) the structure of a macromolecule  in solution has 
been characterized in terms of a number  of parameters.  Further,  we have 
characterized the solution in terms of the coordinat ion number  z. More-  
over, parameters  representing pair  interaction energies have been intro- 
duced. In  each macromolecular  chain concomitan t  existence of two kinds 
of sequences differing in rigidity, called compac t  and extended bundles, 
was assumed. Statistical mechanics  was used to derive relations involving 
structural as well as interactional parameters.  To see what  the model  so 
constructed tells us, numerical  calculations were necessary to s tudy effects 
of various parameters  upon  chain conformations.  The present paper  reports 
some results of such calculations. 

2, BASIC RELATIONS 

A monodisperse system of polymeric  chains without  branches  was 
treated in Part  I. (1~ Both polydispersity and  branching can be included. 
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The combinatorial factors for molecular size distribution in random poly- 
functional condensation have been derived by Falk and Marcotte, (2) and 
their relations represent generalizations of earlier equations of Stock- 
mayer (3~ and Flory, (4) Further, distribution functions of molecular masses 
for results of an arbitrary polymerization process have been studied by 
Sicotte. (5'6) Under certain conditions specified by Sicotte (6) the Gram-  
Charlier series expansion with the Laguerre polynomials provides a very 
good fit. However, taking into account branching and polydispersity would 
necessitate introduction of further structural parameters. Therefore, we 
continue with a monodispersive system of nonbranched polymers in the 
interest of perspicuity. 

With the solvent represented by index 1 and the polymer by 2, we have 
three parameters characterizing pair interaction energies: ~/12, ~/~l, and */22. 
This is still relatively complex, so we now introduce one parameter charac- 
terizing the energetic situation in solution. Following Flory (7'8~ we define 

Z ( ' ~ I  1 "1- 1722 - -  2't/12) 
X 1 2  = 2 v  . 2  (1) 

where v* is the segmental hard-core volume and z the liquid coordination 
number. 3 The original definition (7'8) of X12 was in terms of the surface 
parameter sl, but in the present Eq. (1) we have used Eq. (21) from Part 
I.(1) It is worth reminding that the range of possible values of z in the liquid 
state is (9) 

4 ~< z < 11 (2) 

Given Eq. (1), we now rewrite Eqs. (12) and (13) in Part I as 

br - b C - Nce/2 ) flrb(Z -- ~)V .2 
In + 

(b - bc)(b ~ - N~J2)  

• tp m - 2  b ~ + N ~ / 2  (3) 

(b e - Nce/2)(b - b~ - Nce/2) 
In 

(NcJ2 )  2 

2 f l rb(z_  ~)v ,2  ( bc )2 
- zv b~ "1- N c e / 2  (Pm --  P t )XI2  ~" 0 (4) 

z/3 

)2(pm-- l~t)]X12~O 

3 In some earlier work (W. Brostow, unpublished) X12 proportional t o  (2r / l  2 - r/l  I - ~/22) was 
used. The original definition has now been reinstated. 
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Parameters featured in Eqs. (3) and (4) have been defined in Part I (l) 
and we do not repeat the definitions here. We only reiterate that the pair of 
unknowns to be evaluated are the number of compact bundles b c and the 
number Nee of pairs of nearest neighbor bundles such that one of them is 
compact and the other extended. 

The number of factors affecting the structure of polymeric chains in 
solution is reflected by the number of parameters which appear in Eqs. (3) 
and (4). We cannot possibly study the role of each of these parameters 
separately. Rather, we want to acquire the basic understanding of the 
model represented by these equations. To do this, we introduce a terminol- 
ogy for comparing two solvents for the same polymer: we shall call more 
f a v o r a b l e  the solvent which has a lower value of 

f i rb ( z  - f f ) / ) * 2 ( p  m - -  P t ) X 1 2  
F = (5)  

z / )  

Note that the function F corresponds to the second term in Eq. (4) divided 
by the factor which depends on b c and Nce.  Since z, v, v*, r b, and ( v  m - Pt) 
are always positive, F can be negative only when X12 is negative. F can be 
equal to zero (a) when all polymer segments are tetrafunctional, that is 
f = 4, and simultaneously we are at the liquid-vapor critical point of the 
solvent--see the lower limit in inequality (2); (b) when X12 = 0. Otherwise, 
F is a positive function. 

To explain the usefulness of the function F, let us return to the 
definition of X12. Equation (1) tells us that an increase in strength of the 
solvent-polymer interaction */12 (when the respective potential well is 
deeper) produces a decrease in X12. This is so because 7h2 is a positive 
quantity by definition (unless external pressure is so high that repulsion 
dominates). Qualitatively, we would therefore expect that a decrease of X12 
(by going from one solvent to another, or by manipulating concentration in 
a mixed solvent) should produce a better solvent. Consequently, more 
bundles should become extended ones. Such a reasoning, however, would 
represent a gross oversimplification. The Flory theory of the liquid state (7'8) 
and consequences of its various applications (8,l~ have taught us that the 
energetic parameters do not dominate alone the situation in polymer 
solutions. Not to mention combinatorial entropy contributions, the 
equation-of-state contribution of Flory, represented by molar volume V, 
isobaric expansivity a, and isothermal compressibilty ~r, is quite important. 
To give just one example, Orwoll and Flory (12) have calculated the enthal- 
pies of mixing H E of binary n-alkanes from the Flory theory. For hexane 
and hexadecane at 293.15 K they have found that the energetic contribu- 
tion (proportional to X12 ) is the largest, and H E is positive. As temperature 
increases, a negative equation-of-state contribution becomes dominant, and 
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this explains the otherwise puzzling experimental fact of the change of sign 
of HE. (13) Thus, if two solvents for a given polymer have widely different 
V, a, and rr ,  a lower value of X12 does not necessarily guarantee a better 
solvent. When, however, volumetric characteristics of two (or more) sol- 
vents are comparable, then the most favorable solvent according to our 
definition is also the best one. 

3. S P E C I A L  C A S E S  

Before attempting numerical solutions, let us consider some specific 
configurations. Assuming X12 = 0, from Eqs. (3) and (4) [or (14) and (15) in 
Part I ~1~ ] and from the definitions of the quantities involved we obtain 

b c = b e = b / 2  = Nee = 2Ncc = 2Nee (6) 

Denoting as before the two kinds of bundles by, respectively, letters c and e 
we can write down some possible configurations which fulfill the condition 
(6). For instance, for b = 25 we can have 

eecceecceecceecceecceecce (7) 

We see that (7) obeys (6) within ___ 1; the tolerance ___ 1 results from the fact 
that the sequence (6) is relatively short; note that b is odd and see the 
second and third member in Eq. (4) in Part I. O~ More important, we 
observe that writing configurations fulfilling (6) we ought to take into 
account the dynamics of chains in solution. Thus, instead of (7) consider 

eeeceeccecccecccecceeceee ( 8 ) 

The sequence (8) has exactly the same set of parameters b, b c, be, Nee, Ncc, 
and Nee. From the point of view of the equilibrium statistical mechanics, 
they are both equally acceptable given our model and the condition 
X12 = 0. Elementary considerations of chain dynamics suggest, however, 
that (8) should prevail: chain ends have here more mobility with respect to 
solvent molecules and with respect to the middle part of the chain. 

Returning now to the stage of constructing the model in Ref. 1, we 
find that both b~ and Nee have to be employed in the specification of chain 
conformations. Imagine the model in Part I developed in terms of b~ alone. 
Take the same values of the b-type parameters as before, that is b = 25, 
b~ = 12, and b e = 13. Now, among others, the following two configurations 
would become acceptable too: 

eeeeeeeeeeeeecccccccccccc (9) 

eeeeeeeceeceecceccecccccc ( 1 O) 
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While (10) is better than (9), both sequences violate the condition (6). At 
the same time, since each bundle contains a number r b of polymer seg- 
ments, the usual Gaussian statistics (in terms of the radius of gyration, for 
instance) should be obeyed. From this point of view, we arrive a t t h e  same 
conclusion: the sequences (9) and (10) both have to be rejected, al_though 
(10) is better than (9). Thus, various approaches coincide. Among the 
sequences displayed above, it is the sequence of the type (8) that will be 
found in a real solution in which X12 is small. 

4. C A L C U L A T I O N S  

Equations (3) and (4) have been solved varying a number of parame- 
ters. While we have two equations in two unknowns, the relations are 
anything but linear with respect to b C and Nce .  Solutions were obtained by 
using an IBM 370 Model 168 machine belonging to the UNI-COLL Corp. 
When other parameters were kept constant and only X12 changed (for 
instance from 5 to 10 Jcm-3) ,  the preceding s01ution was inserted to 
initialize the unknowns in the next evaluation. Typically, a solution was 
accepted when the right-hand sides of (3) and (4) became O ( E -  9) or 
o ( E -  i0). 

5. R E S U L T S A N D  D I S C U S S I O N  

An increase in, say, t, m - P t  in Eq. (5) can be compensated by a 
simultaneous decrease of, for instance, v*. This is the reason why we have 
made calculations in series. In each series X12 was varied, while other 
parameters kept constant. 

In one such series we have taken the degree of polymerization r 
=6000;  number of segments in a bundle r b = 10; T - 3 0 0 . 0  K; the 
coordination number z = 6; f = 2 (i.e., an unbranched chain or a chain 
without cycles, see Ref. 1); u m = 0.020 and u t = 0.010, that is a solution 
fairly dilute in which the approximation v e = 0 is applicable. Values of 
v*/ (cm3g - l )  at 298.15 K are: 0.8860 for benzene; (14) 0.9342 for natural 
rubber; (14~ 0.8098 for polystyrene; (15) and 1.000 for polymethylene. (16) 
Therefore, we have taken as a representative value v* = 0.90 cm 3 g - i .  The 
corresponding values of v / ( c m  3 g -  1)(14-16~ are 1.1444, 1.0952, 0.9336, and 
l. 182. We have chosen v = 1.08 cm 3 g -  1. The relative molecular mass of the 
monomer M u = 100.00 (neither M u nor r appears explicitly in Eqs. (3) and 
(4); but note the units of the volumetric parameters and Eq. (2) in Part 
I~1~). 

The results of calculations for a series of X12 values are listed in Table 
I; 1 J c m  -3 = 1 MPa exactly. 
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Table I. Chain Characteristics in Function 
of the Interaction Energy Parameter X ] 2  for 
r = 6 0 0 0 ,  r b = 10,  v m = 0 . 0 2 0 ,  a n d  p~ = 0 . 0 1 0 .  

Other Parameters Listed in the Text 

X12 Nee bc 
Jcm-3 2 b 

0 150.0 0.5000 
0.1 150.0 0.5001 
0.2 150.0 0.5002 
0.5 150.0 0.5004 
1.0 149.9 0.5009 
2.0 149.9 0.5018 
5.0 149.7 0.5045 

10.0 149.3 0.5090 
15.0 148.9 0.5136 
20.0 148.4 0.5183 
25.0 148.0 0.5230 
30.0 147.5 0.5278 
50.0 145.1 0.5475 

100.0 136.5 0.6014 
200.0 106.1 0.7280 
300.0 63.3 0.8561 
400.0 0 1 

We postpone any discussion of Table I until more results are dis- 
played. An important  parameter  which affects the conformation of an 
average chain is the polymer concentration c. When more chains in a unit 
volume are present, u-type parameters increase. Accordingly, we report in 
Table I I  results of another series of computations, with v m = 0.240 and 
vt=0.110,  while all other parameters were the same as in the series 
presented above. 

Looking at Tables I and II  we note, first of all, that in both series an 
increase in XI2 leads ultimately to the disappearance of ce pairs of nearest 
neighbors and to conversion of all bundles into compact  ones. From Eq. (1) 
we see that an increase in X12 corresponds to greater relative strength of 
interactions in pure components as compared to the mixed interactions. 
Clearly, when the affinity of polymer segments, as represented by ~22, 
increases, so does the tendency for compact  conformations. Therefore, the 
fraction bc/b does symbaticaUy with X12. 

By comparing Tables I and I I  the effect of polymer concentration c 
can be assessed. We find that, for a given value of X12, increase of c 
produces a decrease of Nce and a higher value of bJb .  The result is 
expected, but it is also important.  By producing a higher degree of com- 
pactness, a higher polymer concentration results in a smaller volume 



Table II. Chain Characteristics in Function of 
X12 for r = 6000, r b = 10, Pm = 0.240, and Pt = 0.110. 

Other Parameters Listed in the Text. 

Y12 Nce bc 
J cm -3 2 b 

0.0 150.0 0.5000 
0.1 149.9 0.5011 
0.2 149.8 0.5021 
0.5 149.4 0.5022 
1.0 148.8 0.5108 
2.0 147.5 0.5220 
5.0 142.2 0.5586 

10.0 128.0 0.6304 
15.0 105.7 0.7168 
20.0 76.5 0.8101 
25.0 47.8 0.8900 
30.0 27.0 0.9419 
33.0 0 1 
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pervaded by each chain, that is, in a smaller radius of gyration Rg. Thus, 
for higher c complete compactness is reached at a lower value of the 
interchange energy parameter X12. 

We can express the volume v 2 occupied by one polymeric chain in 
terms of the volume of a compact bundle v~ and the volume of an extended 
bundle ve : 

By introducing the symbol 

we can rewrite (l 1) as 

v2 = bcvc + beve (11) 

1 ) e / V  c ~" "~ (12 )  

v 2 = bvc[y -  ( y -  1)bJb]  (13) 

with 7 > 1 by definition, we see how v 2 decreases linearly with an increase 
of bJb. 

To see the concentration effect somewhat more in detail, we show in 
Fig. 1 curves of b J b  vs. t, m for three values of Xl2. In each case Pt = Pro/2, 
while other parameters are the same as before. We see that for very small 
values of X12 the relation deviates only slightly from a straight line. More 
important, in favorable solvents (for the two lower X~2 values) the changes 
of b J b  with concentration are quite slow. For X12 = 20.0 J c m - 3  however, 
a definite concave curvature is obtained. 

In a series of papers Rudin and collaborators (17-19) have treated the 
problem of hydrodynamic volume, effectively occupied by polymer mole- 
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b~ 
b 

0.8. 

0.7- 

0.6" 

0 0 0 

o!o6 o!~o o~.14 o.16' o'.22 " ~m 

Fig. 1. Effect of concentration--in terms of the Um parameter--on the fraction of compact 
bundles bc/b for XI2 = 0.2 (circles), Xl2 = 2.0 (crosses), and X12 = 20.0 J cm -3 (triangles). 
Other parameters are listed in the text. 

cules. Rudin's treatment is in terms of dimensionless swelling factor e = a 3, 

where a is the Flory expansion factor. By assuming 

O~ 3 = EO 
1 + (e  o - 1 / c o ) c  ( 1 4 )  

where e o is a constant and c o the polymer concentration at the theta point, 
Rudin and Wagner (19) made good predictions of effects of solvent and 
concentration on elution volumes in gel permeation chromatography. We 
expect to deal with the problem of hydrodynamic volumes in a separate 
paper. But let us at least signal now that our model provides a reason for 
the success of the simple equation (14): the term 7 -  ( Y -  1)br in Eq. 
(13) can be with good approximation represented by the right-hand side of 
(14). We have found this to be the case for the top curve (X~2 = 20.0 
J c m -  3) in Fig. I. 

Each model of polymeric structures has a built-in dependence on the 
molecular mass M. In this respect, predictions from the present model are 
quite simple. An increase in M produces a proportional increase of b, b C, 
b e, and of Nyy, parameters. Thus, bc/b remains the same. These conclu- 
sions will be used to advantage elsewhere (2~ in the explanation of mechani- 
cal degradation in flow. 

Return now to the definition (I). There is nothing in the definition 
itself to exclude the possibility of negative values of X]2. Accordingly, we 
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have also made calculations which included Xl2 < 0. We have covered the 
entire span of values of bc/b from zero to unity. The results are reported in 
Table III for um = 0.200 and v t -- 0.100, with other parameters the same as 
before. 

We find in Table III that the function Nce vs. X12 exhibits a maximum 
around X12 = - 10 J cm -3. Posing the zero value of XI2 we have found [Eq. 
(6)] that b~ = b e. When X12 becomes negative and its absolute value 

Table III. Chain Characteristics in Function of 
Negative and Positive Values of the Interaction 

Energy Parameter X12 for r = 6000, r b = 10, 
v~ = 0.200, and v t = 0.100. 

Other Parameters Listed in the Text. 

X12 Nce b c 

J c m  -3  2 b 

- 164.0 0 0 

- 160.0 30.4 0.0510 

- 115.0 58.2 0.0998 

- 95.0 75.4 0.1318 

- 75.0 95.2 0.1724 

- 55.0 116.7 0.2243 

- 50.0 122.1 0.2396 

- 45.0 127.5 0.2561 

- 40.0 132.6 0.2738 

- 35.0 137.6 0.2931 

- 30.0 142.1 0.3140 

- 25.0 146.2 0.3370 

- 20.0 149.6 0.3624 

- 15.0 152.0 0.3907 

- 10.0 153.2 0.4225 

- 5.0 152.8 0.4590 

- 2.0 151.4 0.4827 

- 1.0 150.8 0.4912 

0.0 150.0 0.5000 

0.1 149.9 0.5009 

0.2 149.8 0.5018 

0.3 149.7 0.5027 

0.5 149.6 0.5045 

1.0 149.1 0.5090 

2.0 148.1 0.5184 

5.0 144.2 0.5481 

10.0 134.4 0.6042 

15.0 119.6 0.6693 

20.0 99.4 0.7420 

25.0 7 5 . 6  0.8159 

30.0 52.3 0.8800 

40.0 0 1 
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increases, we clearly have conversions of the kind 

. . .  c c c  . . .  - ~  . . .  c e c  . . .  (15) 

which result in a decrease of b C accompanied by an increase of N c e .  Beyond 
the maximum, when X12 becomes more negative, Nce and b c decrease 
simultaneously (compare the behavior for positive X12 values, e.g., in Table 
I). It should be clear that the location of the N ~ e  maximum depends on the 
characteristic parameters of a given chain. 

We see in Table III how a sufficiently negative value of X~2 converts 
the chain into a fully extended one. The absolute value of X~2 necessary to 
achieve this is much higher than the absolute value of positive X~2 neces- 
sary to produce a completely compact chain. Limits of this kind depend 
also on the chain characteristics. 

So far we have studied bundles that contain 10 segments each. In a 
solid polymeric material such as semicrystalline polyethylene one traversal 
of the crystal lamella involves 100-200 segments. (21'22) Compact bundles in 
solution are expected to be smaller, and this is the reason for the value 
r b = 10 hitherto used. It is also interesting, however, to consider the case 
when a crystalline stem upon dissolution becomes a compact bundle in its 
entirety. Other conditions being equal, an increase of r b is equivalent to 
increasing X12. In Fig. 2 we see the curve of b J b  in function of X12 

1~ I / 

o7+/ 

l 1/~10 2~0 310 4tO " • 
Fig. 2. Dependence  of the ra t io  b c / b  on the in te rchange  energy  pa rame te r  XI2. The n u m b e r  
of segments  r = 6000; ~m = 0.200; Pt = 0.100. Con t inuous  line: r b = 10; do t ted  l ine: rb = 100. 
Other  pa ramete r s  are  l isted in the text. 
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corresponding to the data in Table III. In the same figure we also show the 
curve for r b = 100, while all remaining parameters are the same; the 
limiting value of b C = b is reached 10 times faster. 

In the preceding paper (1) and also in Section 3 of the present one we 
have already mentioned the interrelationship between the energetic situa- 
tion in solution (X12), the volume pervaded by a chain (the radius of 
gyration Rg), and the degree of compactness (bb/b). Values of XI2 calcu- 
lated for a number of liquid mixtures by Abe and Flory (23) show the 
following trend: for a given pair of components an increase of temperature 
T produces a decrease of the interaction energy parameter X12. The 
phenomenon seems to be fairly general, and independent of the kind of 
materials involved. All our computations, including those reported above, 
show that a lower X12 produces a lower degree of compactness. Consider 
now a polymer in a not-too-good solvent. Our model now predicts that a 
temperature increase shall make the solvent better (at the same time more 
favorable according to the definition given above); the bc/b. ratio will 
decrease; in consequence, the pervaded volume and Rg will become larger. 

The preceding discussion calls for further comments. First, for freely 
jointed chains we have (4~ the root-mean-square end-to-end length (Zge2) 1/2 
= rl/2l and R 2 = Re2/6, where I is the length of a segment (average, if 
segments are unequal in size). Since our chains are not freely jointed, 
neither relation applies here. Second, a completely compact chain (with 
bc/b = 1) will have the characteristic ratio P = (Rf)t/2/(rl/21) fairly high, 
due to the relative stiffness of the chain. A completely extended chain 
( b J b  = 0) will also have a still higher characteristic ratio, due to strong 
attractions between the polymer chain and the solvent. A minimum of p is 
expected somewhere in between, probably relatively close to the b J b  = 1, 
since every break in the compact structure (an extended bundle) can 
contribute significantly to decreasing Re 2. Below this minimum of p we have 
the typical behavior such that a decrease in X12 (a more favorable solvent) 
produces an increase o f / ~  and of related quantities such as the character- 
istic ratio. We note, at the same time, the existence of a contrary effect: an 
increase in flexibility which accompanies an improvement in solvent quality 
acts in the opposite direction upon Re 2. 

In a series of papers Utracki and his colleagues (24-27) have studied 
Newtonian viscosities of polymer solutions, polymer melts, and also of 
nonpolymeric liquid phases, organic as well as inorganic ones. The key 
objective was establishing a corresponding states principle for viscosity 7/in 
function of temperature T and concentration c. Some of the ~/(T) as well as 
some ~(c) curves have shown changes of slope. Utracki points out (24) that 
changes of chain conformations with concentration can be the reason for 
discontinuity points. He also (24) notes earlier evidence (25'26) concerning 
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possible structural transitions caused by temperature changes, in single 
component liquids as well as in solutions. While more studies of this 
specific problem would be worthwhile, the phenomena observed by Utracki 
can well be connected with those studied in this and in the preceding paper. 
In Section 1 of Part I (1~ we have discussed a rapid change between two 
widely different conformations as a rather degenerate but possible case, as 
compared to more gradual changes. In Fig. 1 of the present paper we see 
that in some cases the conformational changes with concentration are slow, 
and in a different case they might be quite fast. This provides a neat 
connection to the finding of Utracki (24~ that some viscosity curves vs. a 
concentration-dependent parameter defined by him are straight lines, while 
other such curves exhibit inflection points. 

Necessarily, chain conformation changes reflected by viscosities have 
to be also reflected in other properties. An interesting case in point is the 
study of viscosity of stereoisomers of poly (1,4-dichloro-2, 3-epoxybutane) 
in dimethlyformamide, dimethylacetamide, cyclohexanone, and benzene by 
Forsman and Poddar. (28~ They have found abrupt changes in slope in the 
viscosity vs. concentration curves, similar to those observed by Utracki for 
other systems. At the same time, Poddar and Forsman (29) have studied 
dilute solutions of the same polymer in a number of solvents by the 
methods of light scattering, osmometry, and gel permeation chromatogra- 
phy. They have found evidence that an ordered structure in solution is 
disrupted by strong polymer + solvent interactions. Just as we have done in 
the preceding paper, O) Poddar and Forsman assume a parentage relation- 
ship between chain conformations in the solid state and in solution: since 
the solid polymer is helical, they believe that t h e  ordered structure in 
solution has the helical block conformation. Further, in a third paper from 
the same series, Poddar and Forsman (3~ say that the more ordered 
structure involves higher stiffness--one more parallel to our approach. 

In a series of papers Mark and collaborators (31-34) have studied effects 
of flexibility of polyoxides [(CHE)y - 0It upon their properties. To compare 
different compounds (y Was the main variable of interest), all materials 
were studied in their unperturbed states (subscript 0). Since our main 
interest is in the effect of solvent upon properties of one polymeric material, 
the study of Mark and his group and ours are complementary. The main 
conclusions of Mark (34) are (i) the characteristic ratio Oo vs. y curve passes 
through a minimum; (ii) the curve of the combinatorial partition function 
Q c vs. y passes through a maximum, and the maximum appears close to the 
minimum of the 00 vs. y curve; (iii) the curve of the melting point T m vs. y 
has a minimum at a location close to the two extrema just mentioned. We 
thus find that Mark's conclusions agree well with and indeed complement 
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ours. His conclusion (i) fits well with our picture of changes of p with X12 
discussed above. As for Mark's conclusion (ii), our Q c as given in Eq. (9) in 
Part I ~1) consists of the appropriate Boltzmann factor multiplied by the 
combinatorial Ising-like factor ~, the latter defined by Eq. (10) in Part I. 
Our Table III shows that Nee vs. X12 passes through a maximum, and 
necessarily so does ft. Therefore, while our independent variable is X12 and 
not Mark's y, there is also an approximate eoincidence of a p minimum 
with a Q~ maximum. As for the third Mark's conclusion, we have T m 

= H m / S m ,  where H m and Sm are, respectively, the enthalpy and the 
entropy of melting (or of fusion). Mark (34) notes that low melting tempera- 
tures are for polymers generally thought to be produced by high S~ values. 
If this is the case, a polymer chain going from a liquid phase (melt or 
solution) into a solid would tend to change its entropy more if its Q~ was 
larger, while a smaller Q ~ would be associated with smaller Sin. Thus, from 
our approach we would also expect a not too far location of a maximum of 
Q C from a minimum of T m, while again the independent variable is 
different from that studied by Mark and collaborators. 

There are various ways of looking at a polymeric chain. For instance, 
the rotational isomeric state approach ~35) deals with the chemical structures 
of individual segments and provides large amounts of pertinent informa- 
tion. The model developed in this and in the preceding paper provides 
relatively less description, but it is concerned with somewhat different 
facets of the chain. There exist still more ways of dealing with macromolec- 
ular chain configurations (and properties). For instance, a very interesting 
problem has been considered by Forsman: ~36) effects of segment-segment 
association on chain dimensions. 
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